^{35}Cl Quadrupole Relaxation Study on $Cs_2[Au(I)Cl_2][Au(III)Cl_4]$ and $Cs_2[Ag(I)Cl_2][Au(III)Cl_4]$

A. Ishikawa, M. Kurasawa, K. Kurasawa, A. Sasane, R. Ikeda^a, and N. Kojima^b

Department of Chemistry, Faculty of Science, Shinshu University, Matsumoto 390-8621, Japan

^a Department of Chemistry, University of Tsukuba, Tsukuba 305-8751, Japan
^b Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan

Reprint requests to Dr. A. I.; Fax: +81-263-37-2559, E-mail: ishikawa@ripms.shinshu-u.ac.jp

Z. Naturforsch. **57 a**, 348–352 (2002); received January 23, 2002

Presented at the XVIth International Symposium on Nuclear Quadrupole Interactions, Hiroshima, Japan, September 9-14, 2001.

Two 35 Cl NQR spin echo signals, $\nu_{Q1} = 17.28$ MHz (Au(I)-Cl) and $\nu_{Q2} = 27.10$ MHz (Au(II)-Cl), have been observed at 77 K from two samples of Cs₂[Au(I)Cl₂][Au(III)Cl₄] prepared differently. The resonances resulted at the same frequencies but with different line widths. Cs₂[Ag(I)Cl₂]-[Au(III)Cl₄] yielded a singlet, $\nu_{Q2} = 27.96$ MHz, at 77 K. The three samples gave rise to ESR signals indicating the presence of paramagnetic Au(II) or Ag(II) sites with low concentration. ³⁵Cl NQR spin-lattice relaxation time T_{1Q} measurements revealed that only the reorientational motions of the anions [Au(III)Cl₄]⁻ are exited at high temperatures.

Key words: ³⁵Cl NQR Spin-lattice Relaxation; Mixed-valence Complex; Reorientational Motion; Lattice Vibration; ESR.